Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
نویسنده
چکیده
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+ entry through voltage-gated Ca2+ channels, whereas spontaneous release is thought to be Ca2+ -independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This study shows, using the whole cell patch-clamp technique in rat cerebellar slices, that at the interneuron- Purkinje cell synapse activation of presynaptic group II metabotropic glutamate receptors suppresses spontaneous GABA release through a mechanism independent of voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Ca2+ release from intracellular Ca2+ stores, suggesting that the metabotropic receptors target the release machinery directly. Voltage gated Ca2+ channel-independent release following increased presynaptic cAMP production is similarly inhibited by these metabotropic receptors. In contrast, both voltage-gated Ca2+ channel-dependent and presynaptic N-methyl-D-aspartate receptor-dependent GABA release were unaffected by activation of group II metabotropic glutamate receptors. Hence, the mechanisms underlying spontaneous and Ca2+ -dependent GABA release are distinct in that only the former is blocked by group II metabotropic glutamate receptors. Thus the same neurotransmitter, glutamate, can activate or inhibit neurotransmitter release by selecting different receptors that target different release machineries.
منابع مشابه
Selective inhibition of spontaneous but not Ca-dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices
Glitsch, Maike. Selective inhibition of spontaneous but not Ca dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices. J Neurophysiol 96: 86–96, 2006. First published April 12, 2006; doi:10.1152/jn.01282.2005. Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca entry thr...
متن کاملActivation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability.
Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. Th...
متن کاملActivation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells.
Granule and periglomerular cells in the main olfactory bulb express group I metabotropic glutamate receptors (mGluRs). The group I mGluR agonist 3,4-dihydroxyphenylglycine (DHPG) increases GABAergic spontaneous IPSCs (sIPSCs) in mitral cells, yet the presynaptic mechanism(s) involved and source(s) of the IPSCs are unknown. We investigated the actions of DHPG on sIPSCs and TTX-insensitive miniat...
متن کاملMetabotropic glutamate receptors in the rat nucleus accumbens.
The effects of glutamate metabotropic receptors (mGluRs) on excitatory transmission in the nucleus accumbens were investigated using electrophysiological techniques in rat nucleus accumbens slices. The broad-spectrum mGluR agonist (1S,3R)-1-aminocyclopentyl-1,3-dicarboxylate, the mGluR group 2 selective agonists (S)-4-carboxy-3-hydroxyphenylglycine, (1S,3S)-ACPD) and (2S,1'S,2'S)-2-(2'-carboxyc...
متن کاملMetabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 96 1 شماره
صفحات -
تاریخ انتشار 2006